Highly conducting multilayer films from graphene nanosheets by a spin self-assembly method

Cited 25 time in webofscience Cited 0 time in scopus
  • Hit : 367
  • Download : 0
This article reports a simple, versatile approach to the fabrication of high conducting multilayer films composed of alternating graphene (G) nanosheets and poly(sodium 4-styrenesulfonate) (PSS) using an electrostatic spin self-assembly technique. G nanosheets were prepared from natural graphite by oxidization, expansion, exfoliation, reduction and modification with cationic surfactant cetyltrimethylammonium bromide (C(16)TAB) and anionic surfactant sodium dodecyl sulfate (SDS). The growth process of the (PSS/G(+)/G(-))(n) multilayer films was characterized by UV-vis spectroscopy. Absorbance plotted against the number of bilayers exhibited a linear dependence, indicating a progressive and uniform deposition process of the multilayer films. Higher rotation speeds (omega) can be used to fabricate thinner films, and the G content is in direct proportion to omega(-1/2). The prepared (PSS/G(+)/G(-))(n) multilayer films exhibit an attractive electrical conductivity in the range of 80-110 S cm(-1). When the film thickness overcomes the effect of surface roughness and film morphology, a percolation effect is observed at the percolation threshold. The effects of the number of bilayers on the electrical properties of the ultrathin films are investigated in detail. The results show that the conductivity and percolation threshold can be controlled by adjusting the PSS/G(+)/G(-) ratio, rotation speed, and size of G nanosheets.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2011-04
Language
English
Article Type
Article
Keywords

GRAPHITE OXIDE NANOPLATELETS; BY-LAYER MANIPULATION; AIR-WATER-INTERFACE; NANOSTRUCTURED MATERIALS; MOLECULAR RECOGNITION; CONJUGATED POLYMERS; COMPOSITE FILMS; CARBON; NANOPARTICLES; REDUCTION

Citation

JOURNAL OF MATERIALS CHEMISTRY, v.21, no.14, pp.5378 - 5385

ISSN
0959-9428
DOI
10.1039/c0jm04055j
URI
http://hdl.handle.net/10203/98812
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 25 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0