The number of exceptional orbits of a pseudofree circle action on S(5)

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 248
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Jin-Hongko
dc.date.accessioned2013-03-11T05:49:53Z-
dc.date.available2013-03-11T05:49:53Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2011-03-
dc.identifier.citationJOURNAL OF FIXED POINT THEORY AND APPLICATIONS, v.9, no.1, pp.55 - 62-
dc.identifier.issn1661-7738-
dc.identifier.urihttp://hdl.handle.net/10203/98427-
dc.description.abstractLet M be a closed Riemannian manifold of dimension 5 which admits a Riemannian metric of nonnegative sectional curvature. The aim of this short paper is to show that under certain lower bound of the orders of isotropy subgroups, every pseudofree and isometric S-1-action on M cannot have more than five exceptional circle orbits. As a consequence, we conclude that a pseudofree and isometric S-1-action on a 5-sphere S-5 with a Riemannian metric of nonnegative sectional curvature cannot have more than five exceptional circle orbits. This gives a result related to the Montgomery-Yang problem. In addition, we also give some further related result about nonnegatively curved manifolds of dimension 5 with an isometric but not necessarily pseudofree circle action.-
dc.languageEnglish-
dc.publisherBIRKHAUSER VERLAG AG-
dc.subjectSYMMETRY-
dc.subjectTOPOLOGY-
dc.subject4-MANIFOLDS-
dc.titleThe number of exceptional orbits of a pseudofree circle action on S(5)-
dc.typeArticle-
dc.identifier.wosid000291361000003-
dc.identifier.scopusid2-s2.0-79651473248-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue1-
dc.citation.beginningpage55-
dc.citation.endingpage62-
dc.citation.publicationnameJOURNAL OF FIXED POINT THEORY AND APPLICATIONS-
dc.contributor.localauthorKim, Jin-Hong-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorPseudofree circle actions-
dc.subject.keywordAuthorMontgomery-Yang problem-
dc.subject.keywordPlusSYMMETRY-
dc.subject.keywordPlusTOPOLOGY-
dc.subject.keywordPlus4-MANIFOLDS-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0