Mussel-Inspired Encapsulation and Functionalization of Individual Yeast Cells

Cited 356 time in webofscience Cited 0 time in scopus
  • Hit : 418
  • Download : 0
The individual encapsulation of living cells has a great impact on the area of cell-based sensors and devices as well as fundamental studies in cell biology. In this work, living yeast cells were individually encapsulated with functionalizable, artificial polydopamine shells, inspired by an adhesive protein in mussels. Yeast cells maintained their viability within polydopamine, and the cell cycle was controlled by the thickness of the shells. In addition, the artificial shells aided the cell in offering much stronger resistance against foreign aggression, such as lyticase. After formation of the polydopamine shells, the shells were functionalized with streptavidin by utilizing the chemical reactivity of polydopamine, and the functionalized cells were biospecifically immobilized onto the defined surfaces. Our work suggests a biomimetic approach to the encapsulation and functionalization of individual living cells with covalently bonded, artificial shells.
Publisher
AMER CHEMICAL SOC
Issue Date
2011-03
Language
English
Article Type
Article
Keywords

LIVING CELLS; CHEMICAL-MODIFICATION; SURFACE-CHEMISTRY; PROTEINS; ADHESION; SPORES; BIOCONJUGATION; COATINGS; BIOTIN; SHELL

Citation

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.133, no.9, pp.2795 - 2797

ISSN
0002-7863
URI
http://hdl.handle.net/10203/97851
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 356 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0