THE GENERALIZED POLARIZATION TENSORS FOR RESOLVED IMAGING. PART I: SHAPE RECONSTRUCTION OF A CONDUCTIVITY INCLUSION

Cited 33 time in webofscience Cited 0 time in scopus
  • Hit : 450
  • Download : 436
DC FieldValueLanguage
dc.contributor.authorAmmari, Hko
dc.contributor.authorKang, Hko
dc.contributor.authorLim, Mikyoungko
dc.contributor.authorZribi, Habibko
dc.date.accessioned2013-03-09T22:29:54Z-
dc.date.available2013-03-09T22:29:54Z-
dc.date.created2012-03-06-
dc.date.created2012-03-06-
dc.date.issued2012-01-
dc.identifier.citationMATHEMATICS OF COMPUTATION, v.81, no.277, pp.367 - 386-
dc.identifier.issn0025-5718-
dc.identifier.urihttp://hdl.handle.net/10203/97667-
dc.description.abstractWith each C-2-domain and material parameter, an infinite number of tensors, called the Generalized Polarization Tensors (GPTs), is associated. The GPTs contain significant information on the shape of the domain and its material parameter. They generalize the concept of Polarization Tensor (PT), which can be seen as the first-order GPT. It is known that given an arbitrary shape, one can find an equivalent ellipse or ellipsoid with the same PT. In this paper we consider the problem of recovering finer details of the shape of a given domain using higher-order polarization tensors. We design an optimization approach which solves the problem by minimizing a weighted discrepancy functional. In order to compute the shape derivative of this functional, we rigorously derive an asymptotic expansion of the perturbations of the GPTs that are due to a small deformation of the boundary of the domain. Our derivations are based on the theory of layer potentials. We perform some numerical experiments to demonstrate the validity and the limitations of the proposed method. The results clearly show that our approach is very promising in recovering fine shape details.-
dc.languageEnglish-
dc.publisherAMER MATHEMATICAL SOC-
dc.subjectSMALL INHOMOGENEITIES-
dc.subjectSMALL PERTURBATIONS-
dc.subjectALGORITHM-
dc.subjectPOTENTIALS-
dc.subjectREGULARITY-
dc.subjectINTERFACE-
dc.subjectOPERATOR-
dc.subjectEQUATION-
dc.titleTHE GENERALIZED POLARIZATION TENSORS FOR RESOLVED IMAGING. PART I: SHAPE RECONSTRUCTION OF A CONDUCTIVITY INCLUSION-
dc.typeArticle-
dc.identifier.wosid000299405300015-
dc.identifier.scopusid2-s2.0-80755182451-
dc.type.rimsART-
dc.citation.volume81-
dc.citation.issue277-
dc.citation.beginningpage367-
dc.citation.endingpage386-
dc.citation.publicationnameMATHEMATICS OF COMPUTATION-
dc.contributor.localauthorLim, Mikyoung-
dc.contributor.nonIdAuthorAmmari, H-
dc.contributor.nonIdAuthorKang, H-
dc.contributor.nonIdAuthorZribi, Habib-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorGeneralized polarization tensor-
dc.subject.keywordAuthorasymptotic expansions-
dc.subject.keywordAuthorshape recovery-
dc.subject.keywordPlusSMALL INHOMOGENEITIES-
dc.subject.keywordPlusSMALL PERTURBATIONS-
dc.subject.keywordPlusALGORITHM-
dc.subject.keywordPlusPOTENTIALS-
dc.subject.keywordPlusREGULARITY-
dc.subject.keywordPlusINTERFACE-
dc.subject.keywordPlusOPERATOR-
dc.subject.keywordPlusEQUATION-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 33 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0