Deciphering the transcriptional regulatory logic of amino acid metabolism

Cited 74 time in webofscience Cited 0 time in scopus
  • Hit : 488
  • Download : 0
Although metabolic networks have been reconstructed on a genome scale, the corresponding reconstruction and integration of governing transcriptional regulatory networks has not been fully achieved. Here we reconstruct such an integrated network for amino acid metabolism in Escherichia coli. Analysis of ChIP-chip and gene expression data for the transcription factors ArgR, Lrp and TrpR showed that 19 out of 20 amino acid biosynthetic pathways are either directly or indirectly controlled by these regulators. Classifying the regulated genes into three functional categories of transport, biosynthesis and metabolism leads to the elucidation of regulatory motifs that constitute the integrated network's basic building blocks. The regulatory logic of these motifs was determined on the basis of relationships between transcription factor binding and changes in the amount of transcript in response to exogenous amino acids. Remarkably, the resulting logic shows how amino acids are differentiated as signaling and nutrient molecules, revealing the overarching regulatory principles of the amino acid stimulon.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2012-01
Language
English
Article Type
Article
Keywords

ESCHERICHIA-COLI K-12; MICROARRAY ANALYSIS; ARGININE REGULON; BINDING; REPRESSOR; SYSTEM; GENOME; DNA; EXPRESSION; NETWORK

Citation

NATURE CHEMICAL BIOLOGY, v.8, no.1, pp.65 - 71

ISSN
1552-4450
DOI
10.1038/nchembio.710
URI
http://hdl.handle.net/10203/97452
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 74 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0