Singularity Avoidance of Control Moment Gyros by Predicted Singularity Robustness: Ground Experiment

Cited 16 time in webofscience Cited 0 time in scopus
  • Hit : 281
  • Download : 0
A steering law design for single gimbal control moment gyros (CMGs) for spacecraft attitude control is addressed. The novel approach for the new steering law has a close relevance to the well-known singularity robustness method combined with the null motion approach. The proposed predicted singularity robustness (PSR) approach ultimately leads to an optimized solution of gimbal rates with performance improvement to avoid singularity by robust gradient null vectors. To apply it to practical systems, a singularity index, so-called inner-product index, is also introduced. The null vector induced from the suggested index provides a more reliable and robust way of escaping singular states than that of the well-known condition number index. Performance of the proposed algorithm is demonstrated by using a ground experimental hardware simulator equipped with four single gimbal CMGs floating on top of an air bearing.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2009-07
Language
English
Article Type
Article
Keywords

SMALL SATELLITES; STEERING LAW; DESIGN

Citation

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, v.17, no.4, pp.884 - 891

ISSN
1063-6536
DOI
10.1109/TCST.2008.2011556
URI
http://hdl.handle.net/10203/96157
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0