Motion Regularization for Matting Motion Blurred Objects

Cited 28 time in webofscience Cited 0 time in scopus
  • Hit : 346
  • Download : 0
This paper addresses the problem of matting motion blurred objects from a single image. Existing single image matting methods are designed to extract static objects that have fractional pixel occupancy. This arises because the physical scene object has a finer resolution than the discrete image pixel and therefore only occupies a fraction of the pixel. For a motion blurred object, however, fractional pixel occupancy is attributed to the object's motion over the exposure period. While conventional matting techniques can be used to matte motion blurred objects, they are not formulated in a manner that considers the object's motion and tend to work only when the object is on a homogeneous background. We show how to obtain better alpha mattes by introducing a regularization term in the matting formulation to account for the object's motion. In addition, we outline a method for estimating local object motion based on local gradient statistics from the original image. For the sake of completeness, we also discuss how user markup can be used to denote the local direction in lieu of motion estimation. Improvements to alpha mattes computed with our regularization are demonstrated on a variety of examples.
Publisher
IEEE COMPUTER SOC
Issue Date
2011-11
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, v.33, no.11, pp.2329 - 2336

ISSN
0162-8828
URI
http://hdl.handle.net/10203/95859
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 28 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0