Richardson-Lucy Deblurring for Scenes under a Projective Motion Path

Cited 188 time in webofscience Cited 0 time in scopus
  • Hit : 348
  • Download : 0
This paper addresses how to model and correct image blur that arises when a camera undergoes ego motion while observing a distant scene. In particular, we discuss how the blurred image can be modeled as an integration of the clear scene under a sequence of planar projective transformations (i.e., homographies) that describe the camera's path. This projective motion path blur model is more effective at modeling the spatially varying motion blur exhibited by ego motion than conventional methods based on space-invariant blur kernels. To correct the blurred image, we describe how to modify the Richardson-Lucy (RL) algorithm to incorporate this new blur model. In addition, we show that our projective motion RL algorithm can incorporate state-of-the-art regularization priors to improve the deblurred results. The projective motion path blur model, along with the modified RL algorithm, is detailed, together with experimental results demonstrating its overall effectiveness. Statistical analysis on the algorithm's convergence properties and robustness to noise is also provided.
Publisher
IEEE COMPUTER SOC
Issue Date
2011-08
Language
English
Article Type
Article
Keywords

IMAGE RESTORATION

Citation

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, v.33, no.8, pp.1603 - 1618

ISSN
0162-8828
URI
http://hdl.handle.net/10203/95634
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 188 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0