Synthesis and characterization of RuO2/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors

Cited 115 time in webofscience Cited 0 time in scopus
  • Hit : 338
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLiu R.ko
dc.contributor.authorDuay J.ko
dc.contributor.authorLane T.ko
dc.contributor.authorLee, Sang Bokko
dc.date.accessioned2013-03-09T00:33:57Z-
dc.date.available2013-03-09T00:33:57Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2010-
dc.identifier.citationPHYSICAL CHEMISTRY CHEMICAL PHYSICS, v.12, no.17, pp.4309 - 4316-
dc.identifier.issn1463-9076-
dc.identifier.urihttp://hdl.handle.net/10203/94823-
dc.description.abstractWe report the synthesis of composite RuO2/poly(3,4-ethylenedioxythiophene) (PEDOT) nanotubes with high specific capacitance and fast charging/discharging capability as well as their potential application as electrode materials for a high-energy and high-power supercapacitor. RuO2/PEDOT nanotubes were synthesized in a porous alumina membrane by a step-wise electrochemical deposition method, and their structures were characterized using electron microscopy. Cyclic voltammetry was used to qualitatively characterize the capacitive properties of the composite RuO2/PEDOT nanotubes. Their specific capacitance, energy density and power density were evaluated by galvanostatic charge/discharge cycles at various current densities. The pseudocapacitance behavior of these composite nanotubes originates from ion diffusion during the simultaneous and parallel redox processes of RuO2 and PEDOT. We show that the energy density (specific capacitance) of PEDOT nanotubes can be remarkably enhanced by electrodepositing RuO2 into their porous walls and onto their rough internal surfaces. The flexible PEDOT prevents the RuO2 from breaking and detaching from the current collector while the rigid RuO2 keeps the PEDOT nanotubes from collapsing and aggregating. The composite RuO2/PEDOT nanotube can reach a high power density of 20 kW kg(-1) while maintaining 80% energy density (28 Wh kg(-1)) of its maximum value. This high power capability is attributed to the fast charge/discharge of nanotubular structures: hollow nanotubes allow counter-ions to readily penetrate into the composite material and access their internal surfaces, while a thin wall provides a short diffusion distance to facilitate ion transport. The high energy density originates from the RuO2, which can store high electrical/electrochemical energy intrinsically. The high specific capacitance (1217 F g(-1)) which is contributed by the RuO2 in the composite RuO2/PEDOT nanotube is realized because of the high specific surface area of the nanotubular structures. Such PEDOT/RuO2 composite nanotube materials are an ideal candidate for the development of high-energy and high-power supercapacitors.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectHYDROUS RUTHENIUM OXIDE-
dc.subjectELECTROCHEMICAL ENERGY-STORAGE-
dc.subjectLITHIUM-ION BATTERIES-
dc.subjectNANOSTRUCTURED MATERIALS-
dc.subjectCONDUCTING POLYMER-
dc.subjectELECTRODE MATERIAL-
dc.subjectRATE CAPABILITIES-
dc.subjectACTIVE MATERIALS-
dc.subjectNANOWIRE ARRAYS-
dc.subjectHIGH-CAPACITY-
dc.titleSynthesis and characterization of RuO2/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors-
dc.typeArticle-
dc.identifier.wosid000276896000007-
dc.identifier.scopusid2-s2.0-77951440869-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue17-
dc.citation.beginningpage4309-
dc.citation.endingpage4316-
dc.citation.publicationnamePHYSICAL CHEMISTRY CHEMICAL PHYSICS-
dc.identifier.doi10.1039/b918589p-
dc.contributor.nonIdAuthorLiu R.-
dc.contributor.nonIdAuthorDuay J.-
dc.contributor.nonIdAuthorLane T.-
dc.type.journalArticleArticle-
dc.subject.keywordPlusHYDROUS RUTHENIUM OXIDE-
dc.subject.keywordPlusELECTROCHEMICAL ENERGY-STORAGE-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusNANOSTRUCTURED MATERIALS-
dc.subject.keywordPlusCONDUCTING POLYMER-
dc.subject.keywordPlusELECTRODE MATERIAL-
dc.subject.keywordPlusRATE CAPABILITIES-
dc.subject.keywordPlusACTIVE MATERIALS-
dc.subject.keywordPlusNANOWIRE ARRAYS-
dc.subject.keywordPlusHIGH-CAPACITY-
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 115 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0