Posture Optimization for a Humanoid Robot using a Simple Genetic Algorithm

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 256
  • Download : 0
This study proposes a method of real-time posture optimization of humanoid robots using a genetic algorithm and neural network. Here, the motion of a humanoid robot pushing an object is considered. When the robot starts pushing the object, the palms of its hands and the soles of its feet are assumed to be fixed on the object and on the ground, respectively, and they sense the reaction force from those surfaces. The reaction force results in changes of torques in the joints. This study determines an optimized posture using a genetic algorithm such that either the torques are evenly distributed over all joints or the torque of the weakest joint is rapidly reduced. Several different optimized postures are then generated by varying the reaction forces at the palms and the soles. The data is used as training patterns for a multilayer perceptron neural network with a hack-propagation learning algorithm. Using the trained neural network, the humanoid robot Call find the optimal posture for different reaction forces in real time. Several simulations were conducted to confirm the effectiveness of the proposed method. The simulation results showed that the proposed method can be used for real-time posture optimization of humanoid robots.
Publisher
KOREAN SOC PRECISION ENG
Issue Date
2010
Language
English
Article Type
Article
Citation

INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, v.11, no.3, pp.381 - 390

ISSN
1229-8557
DOI
10.1007/s12541-010-0044-x
URI
http://hdl.handle.net/10203/94260
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0