Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles

Cited 230 time in webofscience Cited 0 time in scopus
  • Hit : 331
  • Download : 0
In traditional photoconductors(1-3), the impinging light generates mobile charge carriers in the valence and/or conduction bands, causing the material's conductivity to increase(4). Such positive photoconductance is observed in both bulk and nanostructured(5,6) photoconductors. Here we describe a class of nanoparticle-based materials whose conductivity can either increase or decrease on irradiation with visible light of wavelengths close to the particles' surface plasmon resonance. The remarkable feature of these plasmonic materials is that the sign of the conductivity change and the nature of the electron transport between the nanoparticles depend on the molecules comprising the self-assembled monolayers (SAMs)(7,8) stabilizing the nanoparticles. For SAMs made of electrically neutral (polar and non-polar) molecules, conductivity increases on irradiation. If, however, the SAMs contain electrically charged (either negatively or positively) groups, conductivity decreases. The optical and electrical characteristics of these previously undescribed inverse photoconductors can be engineered flexibly by adjusting the material properties of the nanoparticles and of the coating SAMs. In particular, in films comprising mixtures of different nanoparticles or nanoparticles coated with mixed SAMs, the overall photoconductance is a weighted average of the changes induced by the individual components. These and other observations can be rationalized in terms of light-induced creation of mobile charge carriers whose transport through the charged SAMs is inhibited by carrier trapping in transient polaron-like states(9,10). The nanoparticle-based photoconductors we describe could have uses in chemical sensors and/or in conjunction with flexible substrates.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2009-07
Language
English
Article Type
Article
Keywords

SELF-ASSEMBLED MONOLAYERS; CHARGE-LIMITED CURRENTS; MOLECULAR JUNCTIONS; HYDRATED ELECTRON; ALKANETHIOLS; RESISTANCE; TRANSPORT; CELLS

Citation

NATURE, v.460, no.7253, pp.371 - 375

ISSN
0028-0836
DOI
10.1038/nature08131
URI
http://hdl.handle.net/10203/94257
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 230 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0