Effects of charged dust particles on nonlinear ion acoustic solitary waves in a relativistic plasma

Cited 15 time in webofscience Cited 0 time in scopus
  • Hit : 225
  • Download : 0
Effects of dust charges on the nonlinear ion acoustic solitary waves in a fully relativistic dusty plasma for both cases of negative and positive dusts are numerically studied based on the pseudopotential method. In the presence of dusty particles, it is found that various types of nonlinear acoustic waves exist in forms which can be viewed as sequential combinations of three kinds of elementary solitary waves: bump, dip, and kink-type solitary waves. The number and the sequence of the constituent elementary solitary waves in a given nonlinear waves depend more sensitively on dust particle density than any other parameters. For negatively charged dust particles of low density, the nonlinear wave is in the shape of bumpy solitary wave. For a somewhat higher density, the wave changes into a form which can be viewed as a combination of bump and dip-type solitary waves. As the density is increased further, a more complex nonlinear wave composed of bump, kink, and dip-type solitary waves emerges. For a much higher density of dust particle, the nonlinear wave can have a shape that can be considered as a combination of bump and kink-type solitary waves. For the case of positively charged dust particles, two kinds of nonlinear waves can exist: bump-type solitary wave and a combination of bump and kink solitary waves. For both cases of negative and positive dust particles, it is found that single dip-type solitary wave does not exist. It is also found that as dust particle density increases, the signature of the elementary waves becomes less prominent. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3097906]
Publisher
AMER INST PHYSICS
Issue Date
2009
Language
English
Article Type
Article
Keywords

GRAINS; AMPLITUDE; ORIGIN

Citation

PHYSICS OF PLASMAS, v.16, no.4

ISSN
1070-664X
DOI
10.1063/1.3097906
URI
http://hdl.handle.net/10203/93917
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0