In Vivo Specific Delivery of c-Met siRNA to Glioblastoma Using Cationic Solid Lipid Nanoparticles

Cited 128 time in webofscience Cited 0 time in scopus
  • Hit : 657
  • Download : 0
RNA interference is a powerful strategy that inhibits gene expression through specific mRNA degradation. In vivo, however, the application of small interfering RNAs (siRNAs) is severely limited by their instability and their poor delivery into target cells and tissues. This is especially true with glioblastomas (GBMs), the most frequent and malignant form of brain tumor, that has limited treatment options due to the largely impenetrable blood-brain barrier. Here, cationic solid lipid nanoparticles (SLN), reconstituted from natural components of protein-free low-density lipoprotein, was conjugated to PEGylated c-Met siRNA. The c-Met siRNA-PEG/SLN complex efficiently down-regulated c-Met expression level, as well as decreased cell proliferation in U-87MG in vitro. In orthotopic U-87MG xenograft tumor model, intravenous administration of the complex significantly inhibited c-Met expression at the tumor tissue and suppressed tumor growth without showing any systemic toxicity in mice. Use of Cy5.5 conjugated SLN revealed enhanced accumulation of the siRNA-PEG/SLN complexes specifically in the brain tumor. Our data demonstrates the feasibility of using siRNA-PEG/SLN complexes as a potential carrier of therapeutic siRNAs for the systemic treatment of GBM in the clinic.
Publisher
AMER CHEMICAL SOC
Issue Date
2011
Language
English
Article Type
Article
Keywords

RNA INTERFERENCE; CONJUGATE

Citation

BIOCONJUGATE CHEMISTRY, v.22, no.12, pp.2568 - 2572

ISSN
1043-1802
URI
http://hdl.handle.net/10203/93713
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 128 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0