On nonnegatively curved 4-manifolds with discrete symmetry

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 286
  • Download : 8
DC FieldValueLanguage
dc.contributor.authorKim, Jin-Hongko
dc.contributor.authorLee, HKko
dc.contributor.author-ko
dc.date.accessioned2013-03-08T16:31:32Z-
dc.date.available2013-03-08T16:31:32Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2009-11-
dc.identifier.citationACTA MATHEMATICA HUNGARICA, v.125, no.3, pp.201 - 208-
dc.identifier.issn0236-5294-
dc.identifier.urihttp://hdl.handle.net/10203/93581-
dc.description.abstractLet M be the closed, simply connected, 4-manifold with nonnegative sectional curvature, called a nonnegatively curved 4-manifold, with an effective and isometric Z (m) -action for a positive integer m a parts per thousand 61(7). Assume that Z (m) acts trivially on the homology of M. The goal of this short paper is to prove that if the fixed point set of any nontrivial element of Z (m) has at most one two-dimensional component, then M is homeomorphic to S (4), # (i) (l) =1S (2) x S (2), l = 1, 2, or # (j) (k) = 1 +/- CP (2), k = 1, 2, 3, 4, 5. The main strategy of this paper is to give an upper bound of the Euler characteristic chi(M) under the homological assumption of a Z (m) -action as above by using the Lefschetz fixed point formula.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.subjectSIMPLY CONNECTED 4-MANIFOLDS-
dc.subjectCIRCLE ACTIONS-
dc.subjectTOPOLOGY-
dc.subjectCURVATURE-
dc.titleOn nonnegatively curved 4-manifolds with discrete symmetry-
dc.typeArticle-
dc.identifier.wosid000271110500001-
dc.identifier.scopusid2-s2.0-77349118510-
dc.type.rimsART-
dc.citation.volume125-
dc.citation.issue3-
dc.citation.beginningpage201-
dc.citation.endingpage208-
dc.citation.publicationnameACTA MATHEMATICA HUNGARICA-
dc.identifier.doi10.1007/s10474-009-8237-4-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorKim, Jin-Hong-
dc.contributor.nonIdAuthor--
dc.type.journalArticleArticle-
dc.subject.keywordAuthornonnegatively curved 4-manifold-
dc.subject.keywordAuthoreffective finite group action-
dc.subject.keywordPlusSIMPLY CONNECTED 4-MANIFOLDS-
dc.subject.keywordPlusCIRCLE ACTIONS-
dc.subject.keywordPlusTOPOLOGY-
dc.subject.keywordPlusCURVATURE-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0