Temperature dependence of symmetric and asymmetric structured Au stripe waveguides

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 276
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorPark S.ko
dc.contributor.authorKim M.-S.ko
dc.contributor.authorJu J.J.ko
dc.contributor.authorKim J.T.ko
dc.contributor.authorPark S.K.ko
dc.contributor.authorLee J.-M.ko
dc.contributor.authorLee, Wook Jaeko
dc.contributor.authorLee M.-H.ko
dc.date.accessioned2013-03-08T16:02:32Z-
dc.date.available2013-03-08T16:02:32Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2010-
dc.identifier.citationOPTICS COMMUNICATIONS, v.283, no.17, pp.3267 - 3270-
dc.identifier.issn0030-4018-
dc.identifier.urihttp://hdl.handle.net/10203/93506-
dc.description.abstractThe thermal effects on pigtailed 22-nm-thick, 5-mu m-wide and 1-cm-long Au stripe long-range surface plasmon polariton (LRSPP) waveguides, embedded in polymer/polymer layers and in polymer/silica layers, are theoretically and experimentally demonstrated. The polymer and silica cladding layers have thermo-optic coefficients of opposite signs. As the temperature varies the Au stripe LRSPP waveguide embedded in the polymer/polymer layers retains its symmetry in the refractive index, but that embedded in the polymer/silica layers becomes asymmetric in the refractive index. The thermal sensitivity in the optical output power of the symmetric structure is smaller than 0.02 dB/degrees C but the sensitivity of the asymmetric structure is similar to 0.3 dB/degrees C. These structures open up potential applications of the LRSPP waveguides for temperature independent/dependent photonic devices. (C) 2010 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectSURFACE-PLASMON-POLARITONS-
dc.subjectOPTICAL SIGNAL TRANSMISSION-
dc.subjectFINITE-WIDTH-
dc.subjectWAVELENGTHS-
dc.subjectPOLYMER-
dc.subjectMODES-
dc.titleTemperature dependence of symmetric and asymmetric structured Au stripe waveguides-
dc.typeArticle-
dc.identifier.wosid000279520800009-
dc.identifier.scopusid2-s2.0-78751639834-
dc.type.rimsART-
dc.citation.volume283-
dc.citation.issue17-
dc.citation.beginningpage3267-
dc.citation.endingpage3270-
dc.citation.publicationnameOPTICS COMMUNICATIONS-
dc.identifier.doi10.1016/j.optcom.2010.04.052-
dc.contributor.nonIdAuthorPark S.-
dc.contributor.nonIdAuthorKim M.-S.-
dc.contributor.nonIdAuthorJu J.J.-
dc.contributor.nonIdAuthorKim J.T.-
dc.contributor.nonIdAuthorPark S.K.-
dc.contributor.nonIdAuthorLee J.-M.-
dc.contributor.nonIdAuthorLee M.-H.-
dc.type.journalArticleEditorial Material-
dc.subject.keywordAuthorOptical waveguide-
dc.subject.keywordAuthorPolaritons-
dc.subject.keywordAuthorSurface plasmon-
dc.subject.keywordAuthorPhotonic device-
dc.subject.keywordPlusSURFACE-PLASMON-POLARITONS-
dc.subject.keywordPlusOPTICAL SIGNAL TRANSMISSION-
dc.subject.keywordPlusFINITE-WIDTH-
dc.subject.keywordPlusWAVELENGTHS-
dc.subject.keywordPlusPOLYMER-
dc.subject.keywordPlusMODES-
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0