A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks

Cited 82 time in webofscience Cited 0 time in scopus
  • Hit : 352
  • Download : 0
The polarization-nulling technique utilizes the different properties of optical signal and amplified spontaneous emission (ASE) noise for accurate monitoring of the optical-signal-to-noise ratio (OSNR) in dynamic optical networks. However, the performance of this technique is bound to be deteriorated if the signal is depolarized by polarization-mode dispersion and/or nonlinear birefringence or the ASE noise is partially polarized due to polarization-dependent loss (PDL) in the transmission link. The authors analyze these effects on the performance of the polarization-nulling technique and introduce several techniques to overcome these problems. These improved versions of the polarization-nulling techniques could monitor the OSNR with accuracy of better than +/- 1 dB, even when the differential group delay is as large as 60 ps. These techniques could also negate the effect of the signal depolarization caused by nonlinear birefringence in a highly nonlinear transmission link. The effect of the partially polarized ASE noise due to PDL is found to be not severe in most cases, as long as the PDL/span is smaller than 0.2 dB. To verify the possibility of using the polarization-nulling technique in real systems, the OSNR of the wavelength-division-multiplexed (WDM) signals transmitted through a 120-km-long aerial fiber link is measured for one week. No significant degradation in the monitoring accuracy is observed during this long-term measurement. In addition, the performance of the polarization-nulling technique in an ultralong-haul transmission link is evaluated by using a 640-km-long recirculating loop. The results show that this technique could accurately measure the OSNR in the transmission link longer than 3200 km. From these results, the authors conclude that the polarization-nulling technique is well suited for monitoring the OSNR in dynamic WDM networks.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2006-11
Language
English
Article Type
Review
Keywords

FIBER; OSNR; DEPENDENCE; SYSTEMS

Citation

JOURNAL OF LIGHTWAVE TECHNOLOGY, v.24, pp.4162 - 4171

ISSN
0733-8724
DOI
10.1109/JLT.2006.883120
URI
http://hdl.handle.net/10203/92705
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 82 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0