Modeling the user preference of broadcasting content using Bayesian networks

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 254
  • Download : 0
We introduce a novel model capturing user preference using the Bayesian approach for recommending users' preferred multimedia content. Unlike other preference models, our method traces the trend of a user preference in time. It allows us to do online learning so we do not need exhaustive data collection. The tracing of the trend can be done by modifying the frequency of attributes in order to force the old preference to be correlated with the current preference under the assumption that the current preference is correlated with the near future preference. The modification is done by partitioning usage history data into smaller sets in a time axis and then weighting the frequencies of attributes to be computed from the partitioned sets of the usage history data in order to differently reflect their significance on predicting the future preference. In the experimental section, the learning and reasoning on user preference in genres are performed by the proposed method with a set of real TV viewers' watching history data collected from many real households. The reasoning performance by the proposed method is also compared with that by a typical method without training in order to show the superiority of our proposed method. (c) 2005 SPIE and IS&T.
Publisher
I S & T - SOC IMAGING SCIENCE TECHNOLOGY
Issue Date
2005-04
Language
English
Article Type
Article
Keywords

INFORMATION

Citation

JOURNAL OF ELECTRONIC IMAGING, v.14, no.2, pp.853 - 858

ISSN
1017-9909
DOI
10.1117/1.1922127
URI
http://hdl.handle.net/10203/92214
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0