A particle flow velocity profiler using in-channel electrodes with unevenly divided interelectrode gaps

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 411
  • Download : 0
This paper presents a particle flow velocity profiler that employs in-channel electrodes with unevenly divided inter-electrode gaps. The proposed electrical method measures both the particle position and velocity from the voltage signals generated by particles passing across three sensing electrodes, thus obtaining the flow velocity profile of the particles in a microfluidic channel. In this paper, we use polystyrene microparticles to characterize the performance of the present particle flow velocity profiler. At flow rates of 1.85, 2.68, and 3.60 mu L/min, a flow velocity profile of 6.59-mu m-diameter particles is measured with an uncertainty of 5.44%, which is comparable to the uncertainty (5%) in a previous microparticle image velocimetry. From the voltage signals for 6.59-and 5.47-mu m particles, we also verify that the present device detects the particle position showing less sensitivity to particle size variation than an existing particle impedance spectroscopy. In addition, in-channel clogging detection using the present electrical method is demonstrated. The present particle flow velocity profiler offers advantages of simpler structure, cheaper cost, and higher measurement stability that is insensitive to particle size for use in integrated microbiofluidic systems.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2008-06
Language
English
Article Type
Article
Keywords

MICROFLUIDIC SYSTEM; SPECTROSCOPY; VELOCIMETRY; SEPARATION; CYTOMETER

Citation

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, v.17, pp.582 - 589

ISSN
1057-7157
DOI
10.1109/JMEMS.2008.924272
URI
http://hdl.handle.net/10203/91902
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0