Class fields from the fundamental Thompson series of level N = o(g)

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 299
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoi, SYko
dc.contributor.authorKoo, JaKyungko
dc.date.accessioned2013-03-07T20:19:23Z-
dc.date.available2013-03-07T20:19:23Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2005-03-
dc.identifier.citationJOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, v.42, no.2, pp.203 - 222-
dc.identifier.issn0304-9914-
dc.identifier.urihttp://hdl.handle.net/10203/91213-
dc.description.abstractThompson series is a Hauptmodul for a genus zero group which lies between Gamma(0)(N) and its normalizer in PSL2(R) ([1]). We construct explicit ring class fields over an imaginary quadratic field K from the Thompson series T-g(alpha) (Theorem 4), which would be an extension of [3], Theorem 3.7.5 (2) by using the Shimura theory and the standard results of complex multiplication. Also we construct various class fields over K, over a CM-field K(zeta(N) + zeta(N)(-1)), and over a field K(zeta N). Furthermore, we find an explicit formula for the conjugates of T-g (alpha) to calculate its minimal polynomial where alpha(is an element of h) is the quotient of a basis of an integral ideal in K.-
dc.languageEnglish-
dc.publisherKOREAN MATHEMATICAL SOCIETY-
dc.titleClass fields from the fundamental Thompson series of level N = o(g)-
dc.typeArticle-
dc.identifier.wosid000227625400002-
dc.identifier.scopusid2-s2.0-20744456117-
dc.type.rimsART-
dc.citation.volume42-
dc.citation.issue2-
dc.citation.beginningpage203-
dc.citation.endingpage222-
dc.citation.publicationnameJOURNAL OF THE KOREAN MATHEMATICAL SOCIETY-
dc.contributor.localauthorKoo, JaKyung-
dc.contributor.nonIdAuthorChoi, SY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthormodular functions-
dc.subject.keywordAuthorThompson series-
dc.subject.keywordAuthorclass fields-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0