Bipolar copolymers as host for electroluminescent devices: Effects of molecular structure on film morphology and device performance

Cited 66 time in webofscience Cited 0 time in scopus
  • Hit : 217
  • Download : 0
Bipolar transport polymers have been developed as host materials for electroluminescent devices by incorporating both electron-transporting and hole-transporting functionalities into copolymers. Two different copolymers having the same molecular weight (M-n similar to 30 kg/mol) and the same fraction of electron-transporting monomers (f(OXA) = 0.50) have been synthesized in the form of random and diblock copolymers, respectively. The effect of molecular structure and film morphology of these bipolar polymers on device performance has been studied. For the diblock copolymers,pronounced phase segregation forming different nanomorphologies has been observed by modern microscopic techniques, which is not observed for the random counterparts under the same thin film preparation conditions. The results of single-layer polymer light emitting diodes (PLEDs) show that the nanophase separation morphology of diblock copolymers has a significant effect on device performance: lowering charge transport and facilitating the hole-electron recombination leads to a much higher quantum efficiency. Applying this high triplet block copolymer as host, a high external quantum efficiency of 5.4% at the brightness of 900 cd/m(2) was achieved for single-layer PLEDs with a green-emitting complex dopant.
Publisher
AMER CHEMICAL SOC
Issue Date
2007
Language
English
Article Type
Article
Keywords

LIGHT-EMITTING-DIODES; LIVING RADICAL POLYMERIZATION; CONJUGATED POLYMERS; PHASE-SEPARATION; HIGH-EFFICIENCY; IRIDIUM COMPLEXES; CHARGE-TRANSPORT; BLOCK-COPOLYMER; ENERGY-TRANSFER; TRIPLET ENERGY

Citation

MACROMOLECULES, v.40, no.23, pp.8156 - 8161

ISSN
0024-9297
DOI
10.1021/ma0715526
URI
http://hdl.handle.net/10203/90226
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 66 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0