Adjustment of home posture of biped humanoid robot using sensory feedback control

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 395
  • Download : 0
Humanoid robot dynamic walking is seriously affected by the initial home posture (walking ready posture). If the initial home posture is not accurate, the robot may fall down during walking despite using robust walking control algorithm. Moreover, the initial home posture of a real physical robot is slightly different at every setting because the zero position of the joint is not exactly the same. Therefore, an accurate and consistent initial home posture is essential when we compare and analyze walking control algorithms. In order to find a zero position, an incremental encoder with a limit switch or an absolute encoder such as a potentiometer can generally be used. However, the initial calibration of this method for a multi-axis humanoid robot that enables the desired initial sensor signal is difficult and time-consuming. Furthermore, it has the disadvantage that additional limit switches or absolute encoders can interfere with the design objective of compactness. Therefore, this paper describes a novel adjustment method of the home posture for a biped humanoid robot utilizing incremental encoders, an inertial sensor and force torque sensors. Four kinds of controllers are proposed for the adjustment of the home posture and adjusted offsets are measured when the outputs of the controllers have converged. Experimental results from KHR-2 show the effectiveness of the proposed adjustment algorithm.
Publisher
SPRINGER
Issue Date
2008-04
Language
English
Article Type
Article
Keywords

DYNAMIC WALKING; CALIBRATION; REALIZATION

Citation

JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, v.51, no.4, pp.421 - 438

ISSN
0921-0296
DOI
10.1007/s10846-007-9195-0
URI
http://hdl.handle.net/10203/89703
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0