Role of molecular orbitals of the benzene in electronic nanodevices

Cited 58 time in webofscience Cited 0 time in scopus
  • Hit : 364
  • Download : 0
In an effort to examine the intricacies of electronic nanodevices, we present an atomistic description of the electronic transport properties of an isolated benzene molecule. We have carried out ab initio calculations to understand the modulation of the molecular orbitals (MOs) and their energy spectra under the external electric field, and conducting behavior of the benzene molecule. Our study shows that with an increase in the applied electric field, the energy of the third lowest unoccupied molecular orbital (LUMO) of benzene decreases, while the first and second LUMO energies are not affected. Above a certain threshold of the external electric field, the third LUMO is lowered below the original LUMO and becomes the real LUMO. Since the transport through a molecule is to a large extent mediated by the molecular orbitals, the change in MOs can lead to a dramatic increase in the current passing through the benzene molecule. Thus, in the course of this study, we show that the modulation of the molecular orbitals in the presence of a tuning parameter(s) such as the external electric field can play important roles in the operation of molecular devices. We believe that this understanding would be helpful in the design of electronic nanodevices. (C) 2005 American Institute of Physics.
Publisher
AMER INST PHYSICS
Issue Date
2005-03
Language
English
Article Type
Article
Keywords

NEGATIVE DIFFERENTIAL RESISTANCE; FIELD-EFFECT TRANSISTORS; CONFORMATIONAL-CHANGES; SCALE ELECTRONICS; CARBON NANOTUBES; SINGLE MOLECULES; ROOM-TEMPERATURE; WIRE JUNCTIONS; EXTRAPOLATION; RECTIFICATION

Citation

JOURNAL OF CHEMICAL PHYSICS, v.122, no.9

ISSN
0021-9606
DOI
10.1063/1.1858851
URI
http://hdl.handle.net/10203/89427
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 58 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0