Development of a computer code system for the analysis of prism and pebble type VHTR cores

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 366
  • Download : 0
Korea Atomic Energy Research Institute (KAERI) is developing a new computer code system for an analysis of very high temperature gas-cooled reactor (VHTR) cores based on the existing HELIOS/MASTER code system. Several methodologies were developed in order for the original light water reactor (LWR) code system to treat the unique VHTR characteristics easily such as the so-called double-heterogeneity problem, the effects of a spectrum shift and a thermal up-scattering, a strong fuel/reflector interaction, etc. The method of a reactivity-equivalent physical transformation (RPT) and the equivalent cylindrical fuel (ECF) model are proposed to transform the double-heterogeneous fuel problem into a single-heterogeneous one in a cylindrical coordinate for both a prismatic fuel and a pebble-bed fuel. An eight energy group structure with appropriate group boundaries has been constructed in the MASTER diffusion nodal calculation, within which the issues of a spectrum shift and a thermal up-scattering are resolved. The concern about a strong fuel/reflector interaction can be handled easily by applying the equivalence theory to a simple one-dimensional spectral geometry consisting of the fuel and reflector regions. By combining all the methodologies described above, a well-known two-step core analysis procedure has been established, where HELIOS is used for the transport lattice calculation and MASTER for the 3-D diffusion nodal core calculation. The applicability of our code system was tested against several core benchmark problems. The results of these benchmark tests revealed that our code system is very accurate and practical for an analysis of both the prismatic and pebble-bed reactor cores. (C) 2008 Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2008-10
Language
English
Article Type
Article
Citation

ANNALS OF NUCLEAR ENERGY, v.35, no.10, pp.1919 - 1928

ISSN
0306-4549
DOI
10.1016/j.anucene.2008.03.011
URI
http://hdl.handle.net/10203/88682
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0