Action-timing problem with sequential Bayesian belief revision process

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 906
  • Download : 1
DC FieldValueLanguage
dc.contributor.authorAhn, Jae-Hyeon-
dc.contributor.authorKim, John J-
dc.identifier.citationEuropean Journal of Operational Research. Vol. 105, No. 1, pp. 118-129en
dc.description.abstractWe consider the problem of deciding the best action time when observations are made sequentially. Specifically we address a special type of optimal stopping problem where observations are made from state-contingent distributions and there exists uncertainty on the state. In this paper, the decision-maker's belief on state is revised sequentially based on the previous observations. By using the independence property of the observations from a given distribution, the sequential Bayesian belief revision process is represented as a simple recursive form. The methodology developed in this paper provides a new theoretical framework for addressing the uncertainty on state in the action-timing problem context. By conducting a simulation analysis, we demonstrate the value of applying Bayesian strategy which uses sequential belief revision process. In addition, we evaluate the value of perfect information to gain more insight on the effects of using Bayesian strategy in the problem.en
dc.subjectDecision theoryen
dc.subjectStochastic dynamic programmingen
dc.subjectBayesian analysisen
dc.subjectAction-timing problemen
dc.titleAction-timing problem with sequential Bayesian belief revision processen
Appears in Collection
KSIM-Journal Papers(저널논문)


  • mendeley


rss_1.0 rss_2.0 atom_1.0