Group key agreement efficient in communication

Cited 97 time in webofscience Cited 136 time in scopus
  • Hit : 478
  • Download : 0
In recent years, collaborative and group-oriented applications and protocols have gained popularity. These applications typically involve communication over open networks; security thus is naturally an important requirement. Group key management is one of the basic building blocks in securing group communication. Most prior research in group key management focused on minimizing computation overhead, in particular minimizing expensive cryptographic operations. However, continued advances in computing power have not been matched by a decrease in network communication delay. Thus, communication latency, especially in high-delay long-haul networks, increasingly dominates the key setup latency, replacing computation delay as the main latency contributor. Hence, there is a need to minimize the size of messages and, especially, the number of rounds in cryptographic protocols. Since most previously proposed group key management techniques optimize computational (cryptographic) overhead, they are particularly impacted by high communication delay. In this work, we discuss and analyze a specific group key agreement technique which supports dynamic group membership and handles network failures, such as group partitions and merges. This technique is very communication-efficient and provably secure against hostile eavesdroppers as well as various other attacks specific to group settings. Furthermore, it is simple, fault-tolerant, and well-suited for high-delay networks.
Publisher
IEEE COMPUTER SOC
Issue Date
2004-07
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON COMPUTERS, v.53, no.7, pp.905 - 921

ISSN
0018-9340
DOI
10.1109/TC.2004.31
URI
http://hdl.handle.net/10203/86066
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 97 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0