Origin of the different pH activity profile in two homologous ketosteroid isomerases

Cited 11 time in webofscience Cited 11 time in scopus
  • Hit : 316
  • Download : 0
Two homologous Delta(5)-3-ketosteroid isomerases from Comamonas testosteroni (TI-WT) and Pseudomonas putida biotype B (PI-WT) exhibit different pH activity profiles. TI-WT loses activity below pH 5.0 due to the protonation of the conserved catalytic base, Asp-38, while PI-WT does not. Based on the structural analysis of PI-WT, the critical catalytic base, Asp-38, was found to form a hydrogen bond with the indole ring NH of Trp-116, which is homologously replaced with Phe-116 in TI-WT. To investigate the role of Trp-116, we prepared the F116W mutant of TI-WT (TI-F116W) and the W116F mutant of PI-WT (PI-W116F) and compared kinetic parameters of those mutants at different pH levels. PI-W116F exhibited significantly decreased catalytic activity at acidic pH like TI-WT, whereas TI-F116W maintained catalytic activity at acidic pH like PI-WT and increased the k(cat)/K-m value by 2.5- to 4.7-fold compared with TI-WT at pH 3.8. The crystal structure of TI-F116W clearly showed that the indole ring NH of Trp-116 could form a hydrogen bond with the carboxyl oxygen of Asp-38 like that of PI-WT. The present results demonstrate that the activities of both PI-WT and TI-F116W at low pH were maintained by a tryptophan, which was able not only to lower the pK(a) value of the catalytic base but also to increase the substrate affinity. This is one example of the strategy nature can adopt to evolve the diversity of the catalytic function in the enzymes. Our results provide insight into deciphering the molecular evolution of the enzyme and creating novel enzymes by protein engineering.
Publisher
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
Issue Date
2003-07
Language
English
Article Type
Article
Keywords

PUTIDA BIOTYPE-B; DELTA(5)-3-KETOSTEROID ISOMERASE; PSEUDOMONAS-PUTIDA; 3-OXO-DELTA(5)-STEROID ISOMERASE; DELTA-5-3-KETOSTEROID ISOMERASE; 3-OXO-DELTA-5-STEROID ISOMERASE; CATALYTIC MECHANISM; CRYSTAL-STRUCTURE; HYDROGEN-BOND; DEPENDENCE

Citation

JOURNAL OF BIOLOGICAL CHEMISTRY, v.278, no.30, pp.28229 - 28236

ISSN
0021-9258
DOI
10.1074/jbc.M302166200
URI
http://hdl.handle.net/10203/85698
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0