Convergence analysis of additive angular dependent rebalance acceleration for the discrete ordinates transport calculations

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 230
  • Download : 0
In solving the discrete ordinates neutron transport equation, the additive angular dependent rebalance (AADR) acceleration method proposed by the authors previously is simple to implement, unconditionally stable, and very effective. For slab geometry problems, it is demonstrated via Fourier analysis that the spectral radii of the AADR acceleration in S-4-like and DP1-like rebalances as well as DP0-like rebalance are less than that of diffusion synthetic acceleration (DSA). This AADR acceleration method is easily extendable to DPN-like and low-order S-N-like rebalancing, and it does not require consistent discretizations between the high-order and low-order equations as does DSA. The continuous Fourier analysis is also performed for rectangular geometry. This Fourier analysis shows that the AADR with directional S-2-like weighting functions, which uses two different rebalance factors for the x and y directions per octant, provides better results than the AADR with the normal S2-like weighting functions, which uses a single weighting function per octant. The low-order equation in AADR is solved by a preconditioned Bi-CGSTAB algorithm, which reduces computational burden significantly.
Publisher
AMER NUCLEAR SOCIETY
Issue Date
2002-09
Language
English
Article Type
Article; Proceedings Paper
Keywords

SYNTHETIC ACCELERATION; EQUATIONS

Citation

NUCLEAR SCIENCE AND ENGINEERING, v.142, no.1, pp.64 - 74

ISSN
0029-5639
URI
http://hdl.handle.net/10203/85107
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0