Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme

Cited 78 time in webofscience Cited 82 time in scopus
  • Hit : 401
  • Download : 469
DC FieldValueLanguage
dc.contributor.authorPark, SHko
dc.contributor.authorKim, Jko
dc.contributor.authorJeon, Hko
dc.contributor.authorSakong, Tko
dc.contributor.authorLee, SNko
dc.contributor.authorChae, Sko
dc.contributor.authorPark, Yko
dc.contributor.authorJeong, CHko
dc.contributor.authorYeom, GYko
dc.contributor.authorCho, Yong-Hoonko
dc.date.accessioned2013-03-04T07:34:04Z-
dc.date.available2013-03-04T07:34:04Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2003-09-
dc.identifier.citationAPPLIED PHYSICS LETTERS, v.83, no.11, pp.2121 - 2123-
dc.identifier.issn0003-6951-
dc.identifier.urihttp://hdl.handle.net/10203/82018-
dc.description.abstractA GaN-based vertical-cavity surface-emitting laser (VCSEL) has been demonstrated in an extended cavity structure. A VCSEL device had a long extended cavity, which consisted of a sapphire substrate as well as a GaN epilayer and had an integrated microlens on one side. High-reflection dielectric mirrors were deposited on both sides of the laser cavity. The laser was optically pumped and operated at room temperature. The VCSEL device lased at a low threshold excitation intensity of 160 kW/cm(2). In contrast to a conventional microcavity-VCSEL structure, the VCSEL operated in multiple longitudinal modes with mode spacing consistent with its physical thickness. (C) 2003 American Institute of Physics.-
dc.languageEnglish-
dc.publisherAMER INST PHYSICS-
dc.subjectDISTRIBUTED BRAGG REFLECTORS-
dc.subjectCHEMICAL-VAPOR-DEPOSITION-
dc.subjectWAVE-
dc.titleRoom-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme-
dc.typeArticle-
dc.identifier.wosid000185231000011-
dc.identifier.scopusid2-s2.0-0142090004-
dc.type.rimsART-
dc.citation.volume83-
dc.citation.issue11-
dc.citation.beginningpage2121-
dc.citation.endingpage2123-
dc.citation.publicationnameAPPLIED PHYSICS LETTERS-
dc.identifier.doi10.1063/1.1611643-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorCho, Yong-Hoon-
dc.contributor.nonIdAuthorPark, SH-
dc.contributor.nonIdAuthorKim, J-
dc.contributor.nonIdAuthorJeon, H-
dc.contributor.nonIdAuthorSakong, T-
dc.contributor.nonIdAuthorLee, SN-
dc.contributor.nonIdAuthorChae, S-
dc.contributor.nonIdAuthorPark, Y-
dc.contributor.nonIdAuthorJeong, CH-
dc.contributor.nonIdAuthorYeom, GY-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusDISTRIBUTED BRAGG REFLECTORS-
dc.subject.keywordPlusCHEMICAL-VAPOR-DEPOSITION-
dc.subject.keywordPlusWAVE-
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 78 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0