Enhancing scalability of tree-based reliable multicast by approximating logical tree to multicast routing tree

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 407
  • Download : 0
Tree-based approach has been proven to be most scalable for one-to-many reliable multicast. It efficiently combines distributed recovery with local recovery over a logical tree of the sender and receivers. It has also been known that the performance of the tree-based protocols heavily depends upon the quality of the logical tree. In this paper, we propose an end-to-end scheme to further enhance the scalability of the tree-based approach. By exchanging packet loss information observed at the end hosts, the scheme constructs and maintains a logical tree congruent with the underlying multicast routing tree even in the presence of session membership and multicast route changes. The scheme also groups the tree nodes and assigns separate multicast. addresses to them in order to enable efficient multicast retransmission for reducing both delay and exposure. We compare the proposed scheme with Tree-based Multicast Transport Protocol (TMTP), a static tree-based protocol. Extensive simulations up to 300 node sessions reveal that the proposed scheme reduces implosion and exposure more than 20% and 50%, respectively. The results also indicate that the scheme is highly scalable such that the improvement gets more significant as the size of the session increases.
Publisher
IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG
Issue Date
2001-10
Language
English
Article Type
Article
Citation

IEICE TRANSACTIONS ON COMMUNICATIONS, v.E84B, no.10, pp.2850 - 2862

ISSN
0916-8516
URI
http://hdl.handle.net/10203/81908
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0