Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes

Cited 448 time in webofscience Cited 437 time in scopus
  • Hit : 499
  • Download : 0
Motivated by the technical and economic difficulties in further miniaturizing silicon-based transistors with the present fabrication technologies, there is a strong effort to develop alternative electronic devices, based, for example, on single molecules(1,2). Recently, carbon nanotubes have been successfully used for nanometre-sized devices such as diodes(3,4), transistors(5,6), and random access memory cells(7). Such nanotube devices are usually very long compared to silicon-based transistors. Here we report a method for dividing a semiconductor nanotube into multiple quantum dots with lengths of about 10 nm by inserting Gd@C-82 endohedral fullerenes. The spatial modulation of the nanotube electronic bandgap is observed with a low-temperature scanning tunnelling microscope. We find that a bandgap of similar to0.5 eV is narrowed down to similar to0.1 eV at sites where endohedral metallofullerenes are inserted. This change in bandgap can be explained by local elastic strain and charge transfer at metallofullerene sites. This technique for fabricating an array of quantum dots could be used for nano-electronics(8) and nano-optoelectronics(9).
Publisher
NATURE PUBLISHING GROUP
Issue Date
2002-02
Language
English
Article Type
Article
Citation

NATURE, v.415, no.6875, pp.1005 - 1008

ISSN
0028-0836
DOI
10.1038/4151005a
URI
http://hdl.handle.net/10203/81521
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 448 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0