Experimental and theoretical studies on the structure of N-doped carbon nanotubes: Possibility of intercalated molecular N-2

Cited 105 time in webofscience Cited 104 time in scopus
  • Hit : 342
  • Download : 489
DC FieldValueLanguage
dc.contributor.authorChoi, HCko
dc.contributor.authorBae, SYko
dc.contributor.authorPark, Jko
dc.contributor.authorSeo, Kko
dc.contributor.authorKim, Cko
dc.contributor.authorKim, Bongsooko
dc.contributor.authorSong, HJko
dc.contributor.authorShin, HJko
dc.date.accessioned2013-03-03T20:30:44Z-
dc.date.available2013-03-03T20:30:44Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2004-12-
dc.identifier.citationAPPLIED PHYSICS LETTERS, v.85, no.23, pp.5742 - 5744-
dc.identifier.issn0003-6951-
dc.identifier.urihttp://hdl.handle.net/10203/80309-
dc.description.abstractThe concentration distribution and electronic structure of N atoms doped in multiwalled banboo-like carbon nanotubes (CNTs) are examined by photon energy-dependent x-ray photoelectron spectroscopy and x-ray absorption near edge structure. The inner part of the nanotube wall has a higher N concentration and contains molecular N-2 presumably intercalated between the graphite layers. These results are supported by the self-consistent charge-density-functional-based tight-binding calculation of double-walled CNTs, showing that the intercalation of N-2 is energetically possible and the graphite-like N structure conformer becomes more stable when the inner wall is more heavily doped. (C) 2004 American Institute of Physics.-
dc.languageEnglish-
dc.publisherAMER INST PHYSICS-
dc.subjectX-RAY-ABSORPTION-
dc.subjectCHEMICAL-VAPOR-DEPOSITION-
dc.subjectBINDING-ENERGY-
dc.subjectNEAR-EDGE-
dc.subjectNITRIDE-
dc.subjectGRAPHITE-
dc.subjectTEMPERATURE-
dc.subjectJUNCTIONS-
dc.subjectNICKEL-
dc.subjectGROWTH-
dc.titleExperimental and theoretical studies on the structure of N-doped carbon nanotubes: Possibility of intercalated molecular N-2-
dc.typeArticle-
dc.identifier.wosid000225620100082-
dc.identifier.scopusid2-s2.0-12944281546-
dc.type.rimsART-
dc.citation.volume85-
dc.citation.issue23-
dc.citation.beginningpage5742-
dc.citation.endingpage5744-
dc.citation.publicationnameAPPLIED PHYSICS LETTERS-
dc.identifier.doi10.1063/1.1835994-
dc.contributor.localauthorKim, Bongsoo-
dc.contributor.nonIdAuthorChoi, HC-
dc.contributor.nonIdAuthorBae, SY-
dc.contributor.nonIdAuthorPark, J-
dc.contributor.nonIdAuthorSeo, K-
dc.contributor.nonIdAuthorKim, C-
dc.contributor.nonIdAuthorSong, HJ-
dc.contributor.nonIdAuthorShin, HJ-
dc.type.journalArticleArticle-
dc.subject.keywordPlusX-RAY-ABSORPTION-
dc.subject.keywordPlusCHEMICAL-VAPOR-DEPOSITION-
dc.subject.keywordPlusBINDING-ENERGY-
dc.subject.keywordPlusNEAR-EDGE-
dc.subject.keywordPlusNITRIDE-
dc.subject.keywordPlusGRAPHITE-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusJUNCTIONS-
dc.subject.keywordPlusNICKEL-
dc.subject.keywordPlusGROWTH-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 105 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0