Efficient image segmentation preserving semantic object shapes

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 311
  • Download : 0
Homogeneous but distinct visual objects having low-contrast boundaries are usually merged in most of the segmentation algorithms. To alleviate this problem, an efficient image segmentation algorithm based on a bottom-up approach is proposed by using spatial domain information only. For initial image segmentation, we adopt a new marker extraction algorithm conforming to the human visual system. It generates dense markers in visually complex areas and sparse markers in visually homogeneous areas. Then, two region-merging algorithms are successively applied so that homogeneous visual objects can be represented as simple as possible without destroying low-contrast real boundaries among them. The first one is to remove insignificant regions in a proper merging order. And the second one merges only homogeneous regions, based on ternary region classification. The resultant segmentation describes homogeneous visual objects with few regions while preserving semantic object shapes well. Finally, a size-based region decision procedure may be applied to represent complex visual objects simpler, if their precise semantic contents are not necessary. Experimental results show that the proposed image segmentation algorithm represents homogeneous visual objects with a few regions and describes complex visual objects with a marginal number of regions with well-preserved semantic object shapes.
Publisher
IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG
Issue Date
1999-06
Language
English
Article Type
Article
Keywords

WATERSHEDS; TRACKING

Citation

IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, v.E82A, no.6, pp.879 - 886

ISSN
0916-8508
URI
http://hdl.handle.net/10203/75581
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0