M-harmonic functions with M-harmonic square

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 586
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Hong-Ohko
dc.date.accessioned2013-03-02T14:21:17Z-
dc.date.available2013-03-02T14:21:17Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued1996-
dc.identifier.citationBULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, v.53, no.1, pp.123 - 129-
dc.identifier.issn0004-9727-
dc.identifier.urihttp://hdl.handle.net/10203/73954-
dc.description.abstractM-harmonic functions with M-harmonic square are proved to be either holomorphic or antiholomorphic in the unit ball of complex n-space under certain additional conditions. For example, if u and u(2) are M-harmonic in the unit ball of C-2 and if u is continuously differentiable up to the boundary then u is either holomorphic or antiholomorphic.-
dc.languageEnglish-
dc.publisherAUSTRALIAN MATHEMATICS PUBL ASSOC INC-
dc.titleM-harmonic functions with M-harmonic square-
dc.typeArticle-
dc.identifier.wosidA1996TV57300013-
dc.identifier.scopusid2-s2.0-0040518940-
dc.type.rimsART-
dc.citation.volume53-
dc.citation.issue1-
dc.citation.beginningpage123-
dc.citation.endingpage129-
dc.citation.publicationnameBULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY-
dc.contributor.localauthorKim, Hong-Oh-
dc.type.journalArticleArticle-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0