Disk allocation methods using genetic algorithm

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 230
  • Download : 0
The disk allocation problem examined in this paper is finding a method to distribute a Binary Cartesian Product File on multiple disks to maximize parallel disk I/O accesses for partial match retrieval. This problem is known to be NP-hard, and heuristic approaches have been applied to obtain suboptimal solutions. Recently, efficient methods such as Binary Disk Module (BDM) and Error Correcting Code (ECC) methods have been proposed along with the restrictions that the number of disks in which files are stored should be a power of 2. In this paper, a new Disk Allocation method based on Genetic Algorithm (DAGA) is proposed. The DAGA does not place restrictions on the number of disks to be applied and it can allocate the disks adaptively by taking into account the data access patterns. Using the schema theory, it is proven that the DAGA can realize a near-optimal solution with high probability. Comparing the quality of solution derived by the DAGA with the General Disk Module (GDM), BDM, and ECC methods through the simulation, shows that 1) the DAGA is superior to the GDM method in all the cases and 2) with the restrictions being placed on the number of disks. the average response time of the DAGA is always less than that of the BDM method and greater than that of the ECC method in the absence of data skew and 3) when data skew is considered, the DAGA performs better than or equal to both BDM and ECC methods, even when restrictions on the number of disks are enforced.
Publisher
IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG
Issue Date
1999
Language
English
Article Type
Article
Keywords

CARTESIAN PRODUCT FILES; PERFORMANCE ANALYSIS; SYSTEMS

Citation

IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, v.E82D, no.1, pp.291 - 300

ISSN
0916-8532
URI
http://hdl.handle.net/10203/73832
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0