Correlated domain model of deuterated dipole glass

Cited 7 time in webofscience Cited 8 time in scopus
  • Hit : 195
  • Download : 0
The low-frequency dielectric relaxation of the deuterated rubidium ammonium dihydrogen phosphate (DRADP) dipole glass was investigated by examining the complex dielectric permittivity above the glass freezing temperature. We show that none of the well-known Debye-type relaxation functions that include the Cole-Cole, Cole-Davidson, and Kohlrausch-Williams-Watts functions adequately describe the observed dielectric relaxation behavior of the DRADP. We then examine the Chamberlin's correlated domain model as a possible description of the DRADP dipole glass. The experimental data and the computational results based on the correlated domain model qualitatively agree with each other with common features of (i) a long tail at the lower-frequency side and (ii) increase in the asymmetry of epsilon "(omega) spectrum with decreasing temperature. Finally, we discuss the fitting results of the DRADP dipole glass in comparison with glass-forming liquids and other polar glasslike systems. [S0163-1829(99)03034-9].
Publisher
AMER PHYSICAL SOC
Issue Date
1999
Language
English
Article Type
Article
Keywords

KOHLRAUSCH-WILLIAMS-WATTS; PROTON-GLASS; RELAXATION FUNCTIONS; HAVRILIAK-NEGAMI; MIXED-CRYSTALS; RB1-X(NH4)XH2PO4; SUSCEPTIBILITY; DYNAMICS; SYSTEMS

Citation

PHYSICAL REVIEW B, v.60, no.10, pp.7170 - 7177

ISSN
1098-0121
DOI
10.1103/PhysRevB.60.7170
URI
http://hdl.handle.net/10203/70409
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0