Central pattern generator parameter search for a biped robot walking using nonparametric estimation based particle swam optimization = 비모수 추정기반 입자 군집 최적화를 이용한 이족 로봇 보행을 위한 운동 발생 중추 파라미터 탐색

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 429
  • Download : 0
Although bipedal walking based on Central Pattern Generator (CPG) is promising, parameter search of CPG is hard because there is no methodology to set the parameters and the search space is too big. Therefore, evolutionary computation(EC) methods such as Genetic Algorithms(GAs), multi-objective Genetic Algorithms, and Genetic Programming(GP) are often used to optimize the parameters. However, when EC is used to find parameters of CPG, the fitness of the parameters is evaluated by applying to a robot and the evaluation takes long time. So fast convergence is a important factor for selecting a method to prevent robot from too much iterations of the method. In this thesis, nonparametric estimation based Particle Swarm Optimization (NEPSO) is suggested to search parameters of CPG for bipedal walking. Canonical Particle Swarm Optimization (PSO) generally converges faster than the other EC method such as GAs and GP and the suggested algorithm converges faster than the PSO. The NEPSO uses a concept experience repository to store previous position and fitness of particles in PSO and estimated best position to accelerate convergence speed. The proposed algorithm is compared with PSO variants in numerical experiments and a tested in a three dimensional dynamic simulator for bipedal walking.
Advisors
Lee, Ju-Jangresearcher이주장researcher
Description
한국과학기술원 : 로봇공학학제전공,
Publisher
한국과학기술원
Issue Date
2008
Identifier
296128/325007  / 020063116
Language
eng
Description

학위논문(석사) - 한국과학기술원 : 로봇공학학제전공, 2008.2, [ vii, 54 p. ]

Keywords

Particle Swam Optimization; Biped Robot; Central Pattern Generator; 입자 군집 최적화; 이족 로봇; 운동 발생 중추

URI
http://hdl.handle.net/10203/54216
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=296128&flag=dissertation
Appears in Collection
RE-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0