Development of turbine cycle performance analyzer using intelligent data mining = 지능형 데이터마이닝을 이용한 터빈사이클 성능 분석기의 개발

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 345
  • Download : 0
In recent year, the performance enhancement of turbine cycle in nuclear power plants is being highlighted because of worldwide deregulation environment. Especially the first target of operating plants became the reduction of operating cost to compete other power plants. It is known that overhaul interval is closely related to operating cost Author identified that the rapid and reliable performance tests, analysis, and diagnosis play an important role in the control of overhaul interval through field investigation. First the technical road map was proposed to clearly set up the objectives. The controversial issues were summarized into data gathering, analysis tool, and diagnosis method. Author proposed the integrated solution on the basis of intelligent data mining techniques. For the reliable data gathering, the state analyzer composed of statistical regression, wavelet analysis, and neural network was developed. The role of the state analyzer is to estimate unmeasured data and to increase the reliability of the collected data. For the advanced performance analysis, performance analysis toolbox was developed. The purpose of this tool makes analysis process easier and more accurate by providing three novel heat balance diagrams. This tool includes the state analyzer and turbine cycle simulation code. In diagnosis module, the probabilistic technique based on Bayesian network model and the deterministic technique based on algebraical model are provided together. It compromises the uncertainty in diagnosis process and the pin-point capability. All the modules were validated by simulated data as well as actual test data, and some modules are used as industrial applications. We have a lot of thing to be improved in turbine cycle in order to increase plant availability. This study was accomplished to remind the concern about the importance of turbine cycle and to propose the solutions on the basis of academic as well as industrial needs.
Advisors
Chang, Soon-Heungresearcher장순흥researcher
Description
한국과학기술원 : 원자력및양자공학과,
Publisher
한국과학기술원
Issue Date
2004
Identifier
237570/325007  / 000995400
Language
eng
Description

학위논문(박사) - 한국과학기술원 : 원자력및양자공학과, 2004.2, [ x, 131 p. ]

Keywords

DATA MINING; TURBINE CYCLE; PERFORMANCE ANALYSIS; 성능 분석; 데이터마이닝; 터빈사이클

URI
http://hdl.handle.net/10203/48960
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=237570&flag=dissertation
Appears in Collection
NE-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0