(The) polynomial interpolating at the zeros of orthogonal polynomials직교 다항식의 영점에서의 다항식 보간법

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 519
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorChoi, U-Jin-
dc.contributor.advisor최우진-
dc.contributor.authorKim, Chang-Ho-
dc.contributor.author김창호-
dc.date.accessioned2011-12-14T04:58:42Z-
dc.date.available2011-12-14T04:58:42Z-
dc.date.issued1991-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=67661&flag=dissertation-
dc.identifier.urihttp://hdl.handle.net/10203/42340-
dc.description학위논문(석사) - 한국과학기술원 : 수학과, 1991.2, [ [ii], 25 p. ]-
dc.description.abstractThe main purpuse of this work is to introduce a new approximation method and to estimate its convergence. We show that this method is the polynomial interpolation at zeros of orthogonal polynomials. In this method, the interpolation polynomials of all continuous function on a finite closed interval converges to a give function in $L_2$-sence. Also if $lim_{\delta\rightarrow 0}\sqrt{n}\omega(f;\frac{1}{n})=0$, where ω(f;δ) is modulus of continuity, then interpolation of $f(x)$ at zeros of Jacobi orthogonal polynomial $P^{(\alpha,\beta)}_{n+1}$ with -1<α,β<0 converges to f(x).eng
dc.languageeng-
dc.publisher한국과학기술원-
dc.title(The) polynomial interpolating at the zeros of orthogonal polynomials-
dc.title.alternative직교 다항식의 영점에서의 다항식 보간법-
dc.typeThesis(Master)-
dc.identifier.CNRN67661/325007-
dc.description.department한국과학기술원 : 수학과, -
dc.identifier.uid000891107-
dc.contributor.localauthorChoi, U-Jin-
dc.contributor.localauthor최우진-
Appears in Collection
MA-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0