Multidisciplinary space shield origami composite: Incorporating cosmic radiation shielding, space debris impact protection, solar radiative heat shielding, and atomic oxygen erosion resistance

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 75
  • Download : 0
Origami composites have been extensively utilized in space structures with constrained payload volumes due to their capability to efficiently transform compact structures into larger surface area or volume configurations. The proposed origami composite incorporates hydrogen-rich benzoxazine polymers known for their high radiation shielding capability and ultra-high-molecular-weight polyethylene fibers known for their high ballistic performance, radiation shielding capability, and flexibility. The proposed origami composite and manufacturing method can enhance bonding strength by achieving precise origami shapes and utilizing the same matrix for both flexible and rigid components. Membrane sheets are manufactured at a low curing temperature to provide flexibility, while rigid facets are separately manufactured at a high curing temperature to increase rigidity. The integration of a polyimide protection layer significantly enhances space environment resistance and reduces mass loss due to atomic oxygen erosion. Despite a slight decrease in ballistic performance after exposure to space conditions, the proposed origami composite maintains superior ballistic performance compared to conventional space materials and conventional origami composites. Compared to existing origami composites or conventional space materials, the proposed origami composite exhibited superior radiation shielding performance. The laminated structure of the proposed origami composite can offer some solar radiation shielding capability. The proposed origami composite offers a multifunctional origami solution as a membrane-space shield material, fulfilling requirements for high ballistic performance, cosmic radiation shielding, solar radiative heat shielding, and space environmental resistance.
Publisher
ELSEVIER SCI LTD
Issue Date
2025-01
Language
English
Article Type
Article
Citation

COMPOSITES PART B-ENGINEERING, v.288

ISSN
1359-8368
DOI
10.1016/j.compositesb.2024.111876
URI
http://hdl.handle.net/10203/324546
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0