Axion domain walls, small instantons, and non-invertible symmetry breaking

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 3
  • Download : 0
Non-invertible global symmetry often predicts degeneracy in axion potentials and carries important information about the global form of the gauge group. When these symmetries are spontaneously broken they can lead to the formation of stable axion domain wall networks which support topological degrees of freedom on their worldvolume. Such non-invertible symmetries can be broken by embedding into appropriate larger UV gauge groups where small instanton contributions lift the vacuum degeneracy, and provide a possible solution to the domain wall problem. We explain these ideas in simple illustrative examples and then apply them to the Standard Model, whose gauge algebra and matter content are consistent with several possible global structures. Each possible global structure leads to different selection rules on the axion couplings, and various UV completions of the Standard Model lead to more specific relations. As a proof of principle, we also present an example of a UV embedding of the Standard Model which can solve the axion domain wall problem. The formation and annihilation of the long-lived axion domain walls can lead to observables, such as gravitational wave signals. Observing such signals, in combination with the axion coupling measurements, can provide valuable insight into the global structure of the Standard Model, as well as its UV completion.
Publisher
SPRINGER
Issue Date
2024-05
Language
English
Article Type
Article
Citation

JOURNAL OF HIGH ENERGY PHYSICS, no.5

ISSN
1126-6708
DOI
10.1007/JHEP05(2024)325
URI
http://hdl.handle.net/10203/323284
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0