Comprehensive correlation analysis of electromechanical behavior in high-stretchable carbon nanotube/polymer composites

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 3
  • Download : 0
In this study, a comprehensive correlation analysis of highly stretchable carbon nanotube (CNT)/polymer composites was conducted to predict the change in electrical conductivities in response to uniaxial deformation. To this end, the representative volume elements (RVEs) were generated by randomly distributing CNTs in a polymer matrix using a Monte Carlo simulation algorithm. The effective electrical conductivity was then calculated through a network model. Under uniaxial tensile strain, where the length of CNTs was maintained constant and their configuration kept straight, CNT translation and rotation were considered along with the effects of tensile strain and shrinkage, incorporating Poisson's ratio. The RVE configuration was updated to account for changes in the network under these conditions. To achieve a strong correlation between the simulation and test results from the previously published works, numerous trade-off studies have been conducted on the RVE size, geometric periodicity, the length of CNT fibers, the mixing ratio of CNT fibers of CNT/polymer composites, and tensile strain. From the results it can be seen that excellent correlations can be only achieved with careful control of the aforementioned parameters.
Publisher
IOP Publishing Ltd
Issue Date
2024-06
Language
English
Article Type
Article
Citation

FUNCTIONAL COMPOSITES AND STRUCTURES, v.6, no.2

DOI
10.1088/2631-6331/ad540e
URI
http://hdl.handle.net/10203/323282
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0