Ultra-Thin Ion Exchange Membranes by Low Ionomer Blending for Energy Harvesting

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 3
  • Download : 0
Exploring the utilization of ion exchange membranes (IEMs) in salinity gradient energy harvesting, a technique that capitalizes on the salinity difference between seawater and freshwater to generate electricity, this study focuses on optimizing PVDF to Nafion ratios to create ultra-thin membranes. Specifically, our investigation aligns with applications such as reverse electrodialysis (RED), where IEMs facilitate selective ion transport across salinity gradients. We demonstrate that membranes with reduced Nafion content, particularly the 50:50 PVDF:Nafion blend, retain high permselectivity comparable to those with higher Nafion content. This challenges traditional understandings of membrane design, highlighting a balance between thinness and durability for energy efficiency. Voltage-current analyses reveal that, despite lower conductivity, the 50:50 blend shows superior short-circuit current density under salinity gradient conditions. This is attributed to effective ion diffusion facilitated by the blend's unique microstructure. These findings suggest that blended membranes are not only cost-effective but also exhibit enhanced performance for energy harvesting, making them promising candidates for sustainable energy solutions. Furthermore, these findings will pave the way for advances in membrane technology, offering new insights into the design and application of ion exchange membranes in renewable energy.
Publisher
MDPI
Issue Date
2024-03
Language
English
Article Type
Article
Citation

NANOMATERIALS, v.14, no.5

DOI
10.3390/nano14050478
URI
http://hdl.handle.net/10203/323226
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0