Sample-efficient inverse design of freeform nanophotonic devices with physics-informed reinforcement learning

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 5
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorPark, Chaejinko
dc.contributor.authorKim, Sanmunko
dc.contributor.authorJung, Anthony W.ko
dc.contributor.authorPark, Juhoko
dc.contributor.authorSeo, Dongjinko
dc.contributor.authorKim, Yonghako
dc.contributor.authorPark, Chanhyungko
dc.contributor.authorPark, Chan Y.ko
dc.contributor.authorJang, Min Seokko
dc.date.accessioned2024-09-11T06:00:15Z-
dc.date.available2024-09-11T06:00:15Z-
dc.date.created2024-09-11-
dc.date.issued2024-04-
dc.identifier.citationNANOPHOTONICS, v.13, no.8, pp.1483 - 1492-
dc.identifier.issn2192-8606-
dc.identifier.urihttp://hdl.handle.net/10203/322890-
dc.description.abstractFinding an optimal device structure in the vast combinatorial design space of freeform nanophotonic design has been an enormous challenge. In this study, we propose physics-informed reinforcement learning (PIRL) that combines the adjoint-based method with reinforcement learning to improve the sample efficiency by an order of magnitude compared to conventional reinforcement learning and overcome the issue of local minima. To illustrate these advantages of PIRL over other conventional optimization algorithms, we design a family of one-dimensional metasurface beam deflectors using PIRL, exceeding most reported records. We also explore the transfer learning capability of PIRL that further improves sample efficiency and demonstrate how the minimum feature size of the design can be enforced in PIRL through reward engineering. With its high sample efficiency, robustness, and ability to seamlessly incorporate practical device design constraints, our method offers a promising approach to highly combinatorial freeform device optimization in various physical domains.-
dc.languageEnglish-
dc.publisherWALTER DE GRUYTER GMBH-
dc.titleSample-efficient inverse design of freeform nanophotonic devices with physics-informed reinforcement learning-
dc.typeArticle-
dc.identifier.wosid001177306100001-
dc.identifier.scopusid2-s2.0-85186178153-
dc.type.rimsART-
dc.citation.volume13-
dc.citation.issue8-
dc.citation.beginningpage1483-
dc.citation.endingpage1492-
dc.citation.publicationnameNANOPHOTONICS-
dc.identifier.doi10.1515/nanoph-2023-0852-
dc.contributor.localauthorJang, Min Seok-
dc.contributor.nonIdAuthorPark, Chaejin-
dc.contributor.nonIdAuthorKim, Sanmun-
dc.contributor.nonIdAuthorJung, Anthony W.-
dc.contributor.nonIdAuthorKim, Yongha-
dc.contributor.nonIdAuthorPark, Chan Y.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthormetasurface-
dc.subject.keywordAuthoradjoint-based method-
dc.subject.keywordAuthorreinforcement learning-
dc.subject.keywordAuthorphysic-informed neural network-
dc.subject.keywordAuthorfreeform design-
dc.subject.keywordAuthorinverse design-
dc.subject.keywordPlusOPTICAL HYPERLENS-
dc.subject.keywordPlusNEURAL-NETWORKS-
dc.subject.keywordPlusOPTIMIZATION-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0