DiTTO: A Distance Adaptive Over 100-mW Wireless Power Transfer System With 1.695-Mb/s Uplink Telemetry and a Shared Inductor Two-Output Regulating Rectification
This article presents a wireless power transfer (WPT) system that incorporates a seamless uplink data telemetry and a simultaneous shared inductor dual-output (SIDO) regulating rectification (RR) under distance variation over a single WPT link. The proposed double charging keying (DCK) uplink data modulation method assisted by a dynamic zoom control breaks the trade-off between power delivery to the load (PDL) and uplink data such that the high data-rate uplink data telemetry no longer limits the amount of PDLs. Furthermore, DCK alleviates the design difficulty in simultaneous uplink data telemetry and RR. The dynamic ZOOM-based digital control algorithm is employed to ensure reliable uplink data telemetry and rapid transient response of SIDO-RR with two Delta Sigma -loops under distance variations. This work achieves 1.695-Mb/s uplink data rate while delivering up to 108 mW to two independent loads over 10-42-mm single-link distance. The chip fabricated in standard 65-nm CMOS occupies 0.2-mm(2 )active area and its performance is validated through in vivo experiments.