DASC: Robust Dense Descriptor for Multi-Modal and Multi-Spectral Correspondence Estimation

Cited 36 time in webofscience Cited 0 time in scopus
  • Hit : 6
  • Download : 0
Establishing dense correspondences between multiple images is a fundamental task in many applications. However, finding a reliable correspondence between multi-modal or multi-spectral images still remains unsolved due to their challenging photometric and geometric variations. In this paper, we propose a novel dense descriptor, called dense adaptive self-correlation (DASC), to estimate dense multi-modal and multi-spectral correspondences. Based on an observation that self-similarity existing within images is robust to imaging modality variations, we define the descriptor with a series of an adaptive self-correlation similarity measure between patches sampled by a randomized receptive field pooling, in which a sampling pattern is obtained using a discriminative learning. The computational redundancy of dense descriptors is dramatically reduced by applying fast edge-aware filtering. Furthermore, in order to address geometric variations including scale and rotation, we propose a geometry-invariant DASC (GI-DASC) descriptor that effectively leverages the DASC through a superpixel-based representation. For a quantitative evaluation of the GI-DASC, we build a novel multi-modal benchmark as varying photometric and geometric conditions. Experimental results demonstrate the outstanding performance of the DASC and GI-DASC in many cases of dense multi-modal and multi-spectral correspondences.
Publisher
IEEE COMPUTER SOC
Issue Date
2017-09
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, v.39, no.9, pp.1712 - 1729

ISSN
0162-8828
DOI
10.1109/TPAMI.2016.2615619
URI
http://hdl.handle.net/10203/322326
Appears in Collection
AI-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 36 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0