Exploring Community and Kinetic Shifts in Nitrifying Microbial Communities in Low Dissolved Oxygen Activated Sludge Facilities for Energy-Efficient Biological Nitrogen Removal

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 19
  • Download : 0
The discovery of the complete ammonia oxidation process (comammox) has challenged conventional nitrification theory, showing microbial adaption to very low dissolved oxygen (DO) concentrations. This study aimed at investigating the effects of different DO concentrations using a series of bioreactors inoculated with biomass from three operationally diverse water resource recovery facilities. Results show that microbial populations adapted to low DO environments can maintain high rates across a range of DO concentrations, indicating their ability to function well even at high DO concentrations. Additionally, long solids retention times (>10 days) can encourage the persistence of comammox populations adapted to different DO concentrations. Molecular analyses revealed that the low DO-facility had a nitrifying population with similar ratios of comammox clades A and B, while the high DO facility was dominated by clade A. Modeling results suggest that the nitrifying population including comammox bacteria from the low DO facility has a different half-saturation coefficient for DO (e.g., 0.05 mg L
Publisher
American Chemical Society
Issue Date
2024-02
Language
English
Article Type
Article
Citation

ACS ES and T Water, v.4, no.2, pp.707 - 718

ISSN
2690-0637
DOI
10.1021/acsestwater.3c00715
URI
http://hdl.handle.net/10203/322298
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0