Rapid fabrication of complex nanostructures using room-temperature ultrasonic nanoimprinting

Cited 20 time in webofscience Cited 0 time in scopus
  • Hit : 13
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorGe, Junyuko
dc.contributor.authorDing, Binko
dc.contributor.authorHou, Shuaiko
dc.contributor.authorLuo, Manlinko
dc.contributor.authorNam, Dongukko
dc.contributor.authorDuan, Hongweiko
dc.contributor.authorGao, Huajianko
dc.contributor.authorLam, Yee Cheongko
dc.contributor.authorLi, Hongko
dc.date.accessioned2024-07-13T13:00:24Z-
dc.date.available2024-07-13T13:00:24Z-
dc.date.created2024-07-13-
dc.date.created2024-07-13-
dc.date.issued2021-05-
dc.identifier.citationNATURE COMMUNICATIONS, v.12, no.1-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10203/320235-
dc.description.abstractDespite its advantages of scalable process and cost-effectiveness, nanoimprinting faces challenges with imprinting hard materials (e.g., crystalline metals) at low/room temperatures, and with fabricating complex nanostructures rapidly (e.g., heterojunctions of metal and oxide). Herein, we report a room temperature ultrasonic nanoimprinting technique (named nanojackhammer) to address these challenges. Nanojackhammer capitalizes on the concentration of ultrasonic energy flow at nanoscale to shape bulk materials into nanostructures. Working at room temperature, nanojackhammer allows rapid fabrication of complex multi-compositional nanostructures made of virtually all solid materials regardless of their ductility, hardness, reactivity and melting points. Atomistic simulations reveal a unique alternating dislocation generation and recovery mechanism that significantly reduces the imprinting force under ultrasonic cyclic loading. As a proof-of-concept, a metal-oxide-metal plasmonic nanostructure with built-in nanogap is rapidly fabricated and employed for biosensing. As a fast, scalable, and cost-effective nanotechnology, nanojackhammer will enable various unique applications of complex nanostructures in optoelectronics, biosensing, catalysis and beyond. Nanoimprinting faces challenges with imprinting hard materials at low or room temperature, and with fabricating complex nanostructures rapidly. Here, the authors overcome these challenges by a room-temperature ultrasonic nanoimprinting technique that capitalizes on the concentration of ultrasonic energy flow at nanoscale.-
dc.languageEnglish-
dc.publisherNATURE RESEARCH-
dc.titleRapid fabrication of complex nanostructures using room-temperature ultrasonic nanoimprinting-
dc.typeArticle-
dc.identifier.wosid000658774600018-
dc.identifier.scopusid2-s2.0-85106939958-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue1-
dc.citation.publicationnameNATURE COMMUNICATIONS-
dc.identifier.doi10.1038/s41467-021-23427-y-
dc.contributor.localauthorNam, Donguk-
dc.contributor.nonIdAuthorGe, Junyu-
dc.contributor.nonIdAuthorDing, Bin-
dc.contributor.nonIdAuthorHou, Shuai-
dc.contributor.nonIdAuthorLuo, Manlin-
dc.contributor.nonIdAuthorDuan, Hongwei-
dc.contributor.nonIdAuthorGao, Huajian-
dc.contributor.nonIdAuthorLam, Yee Cheong-
dc.contributor.nonIdAuthorLi, Hong-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusCO2-
dc.subject.keywordPlusARRAYS-
dc.subject.keywordPlusCOPPER NANOWIRES-
dc.subject.keywordPlusQUORUM-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 20 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0