Effective dye degradation by an environment-friendly porous few-layered carbon nitride photocatalyst developed using sequential molecule self-assembly

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 15
  • Download : 0
Two-dimensional (2D) g-C3N4 (CN) has garnered massive interest for photocatalytic applications owing to its excellent photon contact area, visible-light absorption, and easy transport of photogenerated charge carriers to the surface. However, bulk CN suffers from intrinsically poor charge separation, limited specific surface area, and insufficient visible-light absorption, significantly limiting its photocatalytic efficiency. Exfoliation of bulk crystals into nanosheets with few layers has proven to be an effective and widely used strategy to enhance photocatalytic performance; however, this process is quite complicated, requiring longer times and external energy. Here, a fewlayered porous g-C3N4 (PCN) was synthesized using the molecular self-assembly process. This prepared PCN exposes more active sites, leading to enhanced separation of charge carriers, resulting in a higher photocatalytic activity than regular CN. PCN achieved the best photocatalytic degradation (97.46%) of Rhodamine B (RhB) dye in 1 h, which is three times higher than that by CN (32.57%) because of enhanced porosity of the photocatalyst with few layers. This enhanced degradation performance of PCN was caused by increased visible-light absorption and charge separation along with higher number exposed active sites triggered by the high porosity under visible light, which is greater than those of other metal-free photocatalysts reported thus far.
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Issue Date
2022-03
Language
English
Article Type
Article
Citation

ENVIRONMENTAL RESEARCH, v.204

ISSN
0013-9351
DOI
10.1016/j.envres.2021.112362
URI
http://hdl.handle.net/10203/319988
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0