Simulating lossy Gaussian boson sampling with matrix-product operators

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 34
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLiu, Minzhaoko
dc.contributor.authorOh, Changhunko
dc.contributor.authorLiu, Junyuko
dc.contributor.authorJiang, Liangko
dc.contributor.authorAlexeev, Yuriko
dc.date.accessioned2024-05-02T01:00:47Z-
dc.date.available2024-05-02T01:00:47Z-
dc.date.created2024-05-02-
dc.date.created2024-05-02-
dc.date.created2024-05-02-
dc.date.issued2023-11-
dc.identifier.citationPHYSICAL REVIEW A, v.108, no.5-
dc.identifier.issn2469-9926-
dc.identifier.urihttp://hdl.handle.net/10203/319273-
dc.description.abstractGaussian boson sampling, a computational model that is widely believed to admit quantum supremacy, has already been experimentally demonstrated and is claimed to surpass the classical simulation capabilities of even the most powerful supercomputers today. However, whether the current approach limited by photon loss and noise in such experiments prescribes a scalable path to quantum advantage is an open question. To understand the effect of photon loss on the scalability of Gaussian boson sampling, we analytically derive the asymptotic operator entanglement entropy scaling, which relates to the simulation complexity. As a result, we observe that efficient tensor network simulations are likely possible under the Nout proportional to root N scaling of the number of surviving photons Nout in the number of input photons N. We numerically verify this result using a tensor network algorithm with U(1) symmetry, and we overcome previous challenges due to the large local Hilbert-space dimensions in Gaussian boson sampling with hardware acceleration. Additionally, we observe that increasing the photon number through larger squeezing does not increase the entanglement entropy significantly. Finally, we numerically find the bond dimension necessary for fixed accuracy simulations, providing more direct evidence for the complexity of tensor networks.-
dc.languageEnglish-
dc.publisherAMER PHYSICAL SOC-
dc.titleSimulating lossy Gaussian boson sampling with matrix-product operators-
dc.typeArticle-
dc.identifier.wosid001110834300018-
dc.identifier.scopusid2-s2.0-85177617515-
dc.type.rimsART-
dc.citation.volume108-
dc.citation.issue5-
dc.citation.publicationnamePHYSICAL REVIEW A-
dc.identifier.doi10.1103/PhysRevA.108.052604-
dc.contributor.localauthorOh, Changhun-
dc.contributor.nonIdAuthorLiu, Minzhao-
dc.contributor.nonIdAuthorLiu, Junyu-
dc.contributor.nonIdAuthorJiang, Liang-
dc.contributor.nonIdAuthorAlexeev, Yuri-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusALGORITHMS-
dc.subject.keywordPlusCOMPLEXITY-
dc.subject.keywordPlusLIGHT-
dc.subject.keywordPlusQUANTUM COMPUTATIONAL ADVANTAGE-
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0