Geometric and Electronic Structural Engineering of Isolated Ni Single Atoms for a Highly Efficient CO2 Electroreduction

Cited 15 time in webofscience Cited 0 time in scopus
  • Hit : 28
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorSong, Inaeko
dc.contributor.authorEom, Yaeeunko
dc.contributor.authorMuthu Austeria, P.ko
dc.contributor.authorHong, Da Hyeko
dc.contributor.authorBalamurugan, Maniko
dc.contributor.authorBoppella, Ramireddyko
dc.contributor.authorKim, Do Hwanko
dc.contributor.authorKim, Tae Kyuko
dc.date.accessioned2024-04-29T01:00:32Z-
dc.date.available2024-04-29T01:00:32Z-
dc.date.created2024-02-28-
dc.date.issued2023-07-
dc.identifier.citationSMALL, v.19, no.30-
dc.identifier.issn1613-6810-
dc.identifier.urihttp://hdl.handle.net/10203/319244-
dc.description.abstractTuning the coordination environment and geometric structures of single atom catalysts is an effective approach for regulating the reaction mechanism and maximize the catalytic efficiency of single-atom centers. Here, a template-based synthesis strategy is proposed for the synthesis of high-density NiNx sites anchored on the surface of hierarchically porous nitrogen-doped carbon nanofibers (Ni-HPNCFs) with different coordination environments. First-principles calculations and advanced characterization techniques demonstrate that the single Ni atom is strongly coordinated with both pyrrolic and pyridinic N dopants, and that the predominant sites are stabilized by NiN3 sites. This dual engineering strategy increases the number of active sites and utilization efficiency of each single atom as well as boosts the intrinsic activity of each active site on a single-atom scale. Notably, the Ni-HPNCF catalyst achieves a high CO Faradaic efficiency (FECO) of 97% at a potential of -0.7 V, a high CO partial current density (j(CO)) of 49.6 mA cm(-2) (-1.0 V), and a remarkable turnover frequency of 24 900 h(-1) (-1.0 V) for CO2 reduction reactions (CO2RR). Density functional theory calculations show that compared to pyridinic-type NiNx, the pyrrolic-type NiN3 moieties display a superior CO2RR activity over hydrogen evolution reactions, resulting in their superior catalytic activity and selectivity.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleGeometric and Electronic Structural Engineering of Isolated Ni Single Atoms for a Highly Efficient CO2 Electroreduction-
dc.typeArticle-
dc.identifier.wosid000970993900001-
dc.identifier.scopusid2-s2.0-85152531969-
dc.type.rimsART-
dc.citation.volume19-
dc.citation.issue30-
dc.citation.publicationnameSMALL-
dc.identifier.doi10.1002/smll.202300049-
dc.contributor.localauthorKim, Tae Kyu-
dc.contributor.nonIdAuthorSong, Inae-
dc.contributor.nonIdAuthorEom, Yaeeun-
dc.contributor.nonIdAuthorMuthu Austeria, P.-
dc.contributor.nonIdAuthorHong, Da Hye-
dc.contributor.nonIdAuthorBalamurugan, Mani-
dc.contributor.nonIdAuthorBoppella, Ramireddy-
dc.contributor.nonIdAuthorKim, Do Hwan-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorcoordination environments-
dc.subject.keywordAuthorporous structures-
dc.subject.keywordAuthorsingle Ni atoms-
dc.subject.keywordAuthorCO2 reduction-
dc.subject.keywordAuthorelectrocatalysis-
dc.subject.keywordPlusACTIVE-SITES-
dc.subject.keywordPlusMASS-TRANSPORT-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusELECTROCATALYST-
dc.subject.keywordPlusFUNDAMENTALS-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusCATALYSTS-
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0